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Flow-induced cylinder vibrations can be approximately described by the dynamics of a Hamil-
tonian system excited at a fundamental and a higher harmonic frequency. Three resonances
arise and each of them is associated with a heteroclinic path. The overlap of a pair of tori yields
global chaos, the onset of which is calculated with the Chirikov method. An averaging
approximation is used and a comparison with the exact solution shows excellent agreement in
the low-energy limit. The transition occurs along a locus curve which relates the wind speed
to the frequency parameter. PoincareH maps con"rm qualitatively the theoretical predicted
transition. ( 2000 Academic Press
1. INTRODUCTION

A SEMI-EMPIRICAL MODEL governing #ow-induced vibrations of cylinders was developed and
discussed in previous papers (Berger 1988; Berger & Plaschko 1993). A multiple-scales
approach is used to show that the #ow oscillations can be described with inhomogeneous
equations decoupled from the rest of the system (Plaschko 1996). The excitations of the #ow
is caused by the fundamental and higher harmonic oscillations of the cylinder. This
simpli"ed system (with the excitation as a small perturbation) was tackled with the
Melnikov method and a break-up of heteroclinic orbits of the unperturbed system was
found. This break-up occurs in a sub-space of parameters and it leads to local chaos near
the unperturbed heteroclinic orbit.

In the present paper, we go a step beyond this. We study weakly damped #ow oscillations
and show that three nonlinear resonances exist. This individual resonances are associated
with heteroclinic orbits which can be considered as resonance bands. As the perturbation
parameter is raised, the width of these bands grows and they may "nally overlap to form
large-band global chaos. We apply the overlap criterion (Chirikov 1979) to predict the onset
of this global chaos. The Chirikov method uses an averaging approximation which leads,
generally, only to a correct prediction of the order of magnitude of the parameters
governing the transition (Lin & Reichel 1986). We will show, however, that the averaging
yields, in the low-energy limit, results which correctly approximate the exact solutions. We
will discuss in Appendix A the problems which arise if alternative techniques, like the
elliptic-function approach or the renormalization procedure (Escande 1985), are used.

2. ANALYSIS

It is well known that dissipative e!ects leads to limit-cycle cylinder motions. Berger's (1988)
nonlinear model has been successfully used to describe such periodic cylinder oscillations
0889}9746/00/080883#11 $35.00/0 ( 2000 Academic Press
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(Berger & Plaschko, 1993). Moreover, this model has the power to predict hysteresis, as
found in experiments [cylinder in air: Feng (1968) and Kobayashi (1980); #exing cylinder in
air: Brika & Laneville (1993); cylinder in water: Khalak & Williamson (1996)]. To compare
our theoretical predictions with experimental "ndings, see, e.g. "gure 6 in Berger &
Plaschko and "gure 9 in Brika & Laneville.

In the present paper we focus, however, exclusively on #uid dynamical oscillations and
not on the motion of the cylinder itself. It has been shown previously that, in the case of very
low values of the mass ratio, the evolution of the lift coe$cient can be separated from the
equation that dominates the cylinder oscillations. The #ow is characterized by the lift
coe$cient and we study the temporal evolution of the lift. The periodic cylinder oscillation
manifests itself in terms of a feedback which represents an inhomogeneity in the lift
equation.

We refrain from giving a detailed account of the model equations and we refer the reader
to the derivation given by Berger & Plaschko (1993). The decoupling of the #ow equations
was discussed by Plaschko [1996; equation (4)]. This yields an equation governing the lift
coe$cient x(t) excited by the cylinder oscillations
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coe$cients, X'1 is the wind speed, and b is a frequency constant. The right-hand side of
equation (1) is caused by the oscillations of the cylinder which, for small values of the mass
ratio n (i.e. the ratio of the mass of the #uid displaced by the cylinder, to the mass of the
cylinder), oscillates at unit frequency and with the amplitude A given by
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It could be argued that it is easy to solve (1) numerically and to study in this way the onset
of (global) chaos. Such an a priori numerical approach would, however, involve the
somewhat awesome consideration of a system in a rather high-dimensional parameter
space. In contrast, we base the following investigation on an approximate analysis and we
shall compare the prediction thus derived with the results obtained from numerically
calculated PoincareH maps.

The study of the transition to global chaos will be based on the following scaling:
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where the coe$cients are order-one constants. The X-scaling is motivated by experimental
work of, amongst others, Brika & Laneville (1993) and Khalak & Williamson (1996). These
experiments indicate harmonic cylinder motions in a narrow band located at about
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0)94X41)2. This synchronization interval is well predicted by the numerical results
(1)0054X41)225) presented by Berger & Plaschko (1993). The #uid motion*as charac-
terized by the lift coe$cient*is, however, much less regular than the harmonic cylinder
oscillations (see the temporal evolution and spectral measurements revealed in "gures 6 and
7 of Khalak & Williamson). Note also that the latter experiments have been performed for
moderately high values of the Reynolds number (Re"10 600). Our present study concen-
trates, however, on nearly undamped #uid oscillations, see equation (5), and this corres-
ponds to higher values of the Reynolds number and thus to more irregular #ows. Previous
numerical results (Plaschko 1996) give evidence that these irregular #ow oscillations take
place also at wind speeds near X"1. Thus, we obtain from equations (2) and (5)
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The oscillator is governed by
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It is now easy to see that the oscillator equation (7) is equivalent to the canonical equations
of the Hamiltonian (O(e2)-terms are suppressed from now on)
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Note that the unperturbed problem exhibits a centre in the origin and two saddles at
(q, p)"($1/b, 0). The hyperbolic points are associated with a heteroclinic orbit which is
(for 0(E

0
(1/(4b2)) "lled with periodic paths surrounding the origin.

There are two alternative strategies to study the onset of global chaos: (a) the elliptic
function approach and (b) the averaging approximation, which will be discussed in what
follows.

2.1. ELLIPTIC FUNCTION APPROACH

This precise method is to de"ne action-angle variables, transform the Hamiltonian (10) with
these variables, and pass on to the study the possibility of overlapping tori. Here, we start
from the unperturbed part of equation (10), with energy E
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. We solve this for p and obtain
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Next, we use the standard de"nition of the action variable I (Goldstein 1980),
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where the integral denotes the integration over a period. To "nd the period we note that, in
the regime of periodic motions Dq D(1/b, the potential <"(1/2) (q2!b2 q4/2) and hence
the energy is positive. Thus, from equation (11) we obtain 0(E
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I"E
0
#O (E2

0
) (12a)

Next, we want to calculate the frequency de"ned by
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and we use equation (12) to calculate the inverse frequency. Thus we obtain [see, e.g.
Lawden (1989)]
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where K(k)"n(1#k2/4#O (k4))/2 denotes the complete elliptic integral of the "rst kind
and k is its modulus. We expand equation (14) for small energies and this yields
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We do not continue for the moment to use this &&heavy machinery'' of elliptic functions
and we shall return to this exact approach in Appendix A. In the following, we approximate
the unperturbed Hamiltonian by its average value. We shall compare the frequency
obtained with this approximation to the frequency calculated with the exact analysis using
equations (12) and (13).

2.2. AVERAGING APPROXIMATION

Here we use the canonical transform

q"J2J sinH, p"J2J cos H, (15)

where (J, H) are modi"ed (or approximated) action-angle variables. Hence, we obtain from
equation (10) the unperturbed &&new'' Hamiltonian

R
0
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Now, we average equation (16) and obtain
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To get an error estimate we compare the frequency of the averaged system
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with the frequency in equation (14a). We see that the "rst two terms of the expansion (14a)
agree with (18) where l is substituted from equation (12a). The result of the numerical
evaluation of equation (14) is shown in Figure 1 and again compared with equation (18).
From this we see that the agreement of the two frequencies is striking in the low-energy
range. Only in a region near the saddles (E

0
"4/b2) there appears a slight deviation.

Next, we apply transform (16) also to the perturbed part of equation (10) and we obtain
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Note that there appear "ve types of excitation waves in equation (19) with wave velocities
HQ

w
"0, $1, $3. The nonlinearity of system (19) causes primary resonances, with the

resonance condition [see, e.g. Reichel (1992)]
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Thus, we obtain three individual primary resonances located at

J"a, 2a, 4a, a"4/(3b2) (21)

and in all three cases we face a nonremovable term in R
1
. Note the location of resonances

(21) could be also derived with the use of a perturbation expansion such as Lie transforms
[see, e.g. Lichtenberg & Liebermann (1983)].
FIGURE 1. Comparison of averaged (dotted line) and exact (continuous line) frequencies; b"2.
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It is now convenient to express the nonautonomous system (19) as an extended auton-
omous one. We use Q"t and P as the additional pair of action-angle variables and we
obtain
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In the following, we investigate the three resonances separately and we will "nd that each
resonance is associated with a heteroclinic path or torus. If the expansion parameter grows
the tori may approach each other and this leads to daughter resonates and hence to global
chaos. We consider in the following each resonance separately. We will investigate the
location and the size of each resonance band then use the Chirikov overlap criterion to
calculate the value of e for the onset of global chaos.

2.2.1. ¹he resonance for j"a

Here we obtain from equation (22) the Hamiltonian

Z"J!3(Jb)2/8#P#ueJ sin2H, (23)

Q is a cyclic variable cyclic variable and we have P"const. We can disregard the latter
variable and we obtain an autonomous one-degree-of-freedom (1-dof) system. Its "xed
points are in leading order:

(H, J)"(0, a), ($n, a) hyperbolic points,

(H, J)"($n/2, a) elliptic points. (24)

The heteroclinic path corresponding to this resonance is given by
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It connects the hyperbolic points to each other and its maximal height (which occurs at
H"$n/2) is given as
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The Hamiltonian is now given by
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Therefore, the variable ;
2
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Equation (28) admits solutions which are 2n-periodic with respect to the variable ;. In
equation (29) and (30) we list, however, only the location of the fundamental "xed points.
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, the <-coordinates of the hyperbolic points, are obtained as the solution of the bicubic
equation
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Note that this cubic equation has three real roots. We use an expansion to solve equation
(31) and we obtain
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and we suppress the trivial solution for bs. The corresponding tori are thus given by
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An expansion fails, however, to calculate the maximal heights (located for J"2 a(J"4a)
at ;"!n/2(;"n/2).) and we have to calculate these quantities numerically. Note that
the tori J"a and J"2a exhibit at ;"H"!n/2 a common position of maximal
elongation in the J!direction.

3. NUMERICAL RESULTS

Now we can investigate the overlap of the individual tori. We used exclusively the
parameters

q
0
"n

0
"1 (33)

and varied b, e and u. The two latter parameters appear, however, only in the combination
eu"2(X!1).

It turns out that the only overlap which allows small expansion parameters occurs
between the tori J"a and J"2a. The corresponding numerical "ndings are revealed in
Figure 2. The locus of the onset of global chaos is plotted in this "gure. The globally chaotic
region lies above this curve, and we restricted the values of b such that the term propor-
tional to b2 in equation (11) is not singular. This "gure shows that the onset of global chaos
takes place for values of the perturbation parameter (the deviation of the wind speed from
unity) which still are small enough to justify the omission of higher-order terms.

PoincareH maps (snapshots taken at integer multiples of 2n) are calculated to determine
the onset of global chaos numerically. For comparatively small values of eu this map has



FIGURE 2. Locus of the transition to global chaos, u"1.

FIGURE 3(a, b). PoincareH sections of the oscillator of equation (7) taken at t"2nn, b"2, u"1, e"0)0875,
with initial conditions q(0)"!0)01, p(0)"0. Figure 3(b) is a blow up of Figure 3(a). The plot corresponds to

a single trajectory followed for 18 000 periods.
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the form of a closed curve, which con"rms the existence of a torus in the (q, p, t)-space. An
increase of eu leads "rst to the development of a wavy structure. The latter occurs in
a (q-p)-diagram at the right margin of the map. This structure persists for eu(0)085.
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A particular PoincareH map is shown in Figure 3(a, b) for the slightly higher value
eu"0)0875. There appear two intersecting wavy structures at the right margin of this map
[Figure 3(a)]. A blow up [Figure 3(b)] shows a scatter of points near the intersections and
thus indicates the transition to global chaos.

Our predictions pertain to almost undamped (and hence high Reynolds number) #uid
oscillations. Experimental data of lift oscillations published so far focus, however, only on
intermediately high values of the Reynolds number. To perform a comparison with the
experimental "ndings of Khalak & Williamson we present now in Figures 4 and 5
the temporal evolution of the lift coe$cient q(t) and its power spectrum, respectively. The
maximal amplitude of the lift oscillation has according to Figure 4 a value of about 0)4.
The latter value is in agreement with the observations of oscillation amplitudes in the lower
Reynolds number regime, see "gure 6 in Khalak & Williamson (1996). The almost undam-
ped oscillations are, however, predicted to vary much more irregularly than the observed
FIGURE 4. Temporal evolution of the lift coe$cient q(t), for parameters as in Figure 3.

FIGURE 5. Power spectrum of the lift coe$cient; parameters as in Figure 3. The frequency parameter u"2nf in
this plot should not be confused with the wind speed parameter u de"ned in the last part of equation of (5).
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lower Reynolds number oscillations. This can be seen from a comparison of our noisy
power spectrum (Figure 5) with the corresponding experimental data ("gure 7 in Khalak
& Williamson). The dominant peak of our spectrum lies at about u"2nf"1, which is
close to the experimental value of about f"0)23 (with a decreasing tendency as Re grows) in
"gure 8 Khalak & Williamson.

4. CONCLUDING REMARKS

An interesting generalization of the present study would be the inclusion of stochastic noise.
Helpful hints to perform such an analysis are given in the recent literature ("ksendal 1998).
We hope we shall return in the near future to tackle this challenging problem. We consider
also performing an experimental study of cylinder vibrations. Previous funding has been
foiled, however, by the Mexican Peso-crisis. We hope that we shall soon be able to "nance
a test-section, such that we can start experimental studies to support the theoretical
predictions.
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APPENDIX A

It is easy to show that the exact solution of the unperturbed part of equation (7) is given by

x (t)"B sn( ft, k), k"J1/f 2!1, B"J2(1!f 2)/b, 0(f(1, (A1)

where sn denotes the Jacobi elliptic function. With this we obtain from equation (10) the unperturbed
Hamiltonian

E
0
"(1!f 2) f 2/b2. (A2)
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To establish an appropriate action-angle transform we recall the periodicity 4 K(k) of the
sn-function. Thus, we de"ne the angle variable H which varies from 0 to 2n as

x(t)"B sn(j), j"(2K H/n, k), or HQ "
fn
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. (A3)

The action variable is obtained if we observe the de"nition
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Thus, after an integration, we derive from equations (A2) and (A3)
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We solve equation (A2) for f and we obtain
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The modulus of elliptic functions is restricted to 0(k(1. Because of the second part of equation
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We introduce now the canonical transform (A3) with q"x(t), p"xR (t) into equation (10) and this
yields
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The Fourier decomposition of the sn-function is given by
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e"e ( f ) denotes the nome of the elliptic functions and it has for small values of the modulus the
expansion ePk2/16#O(k4) for kP0. Thus, we obtain from equation (A8)

sn(j)"sin H#
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Equation (A9) and the third part of (A6) lead together with equation (12a) to the low-energy limit
x"J2I sin H and this again to equation (15). Thus, we see that the averaging procedure and the use
of the &&action-angle variable'' (15) represent the lowest order approximation to the exact solutions and
transformations.

Finally, we mention the renormalization routine developed to predict onset of global chaos
(Escande 1985) and employed later in a number of simple examples (Reichel 1992). This approach
applies, however, only to the rather restricted class of Hamiltonian systems

H"
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2
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cos(x)#a

1
cos[u (x!t)]

and we cannot use this method to tackle our problem.

APPENDIX B

Here, we list the "t constants which appear in equation (3). Firstly, the resonance speed at unit wind
speed ;

1
";(X"1) has the value ;

1
"0)792708. With this we obtain
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).

Note also that the constant D
0f

is de"ned in equation (5).
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